Installation
Install MicroMagnetic is straightforward as long as Julia (http://julialang.org/downloads/) is installed, and it is equally easy in Windows, Linux and Mac.
In Julia, packages can be easily installed with the Julia package manager. From the Julia REPL, type ] to enter the Pkg REPL mode and run:
julia
pkg> add MicroMagnetic
Or, equivalently:
julia
julia> using Pkg;
julia> Pkg.add("MicroMagnetic")
To install the latest development version:
julia
pkg> add MicroMagnetic#master
To enable GPU support, one has to install one of the following packages:
For example, we can install CUDA
for NVIDIA GPUs:
julia
pkg> add CUDA
Now we will see similar messages if we type using MicroMagnetic
julia> using MicroMagnetic
julia> using CUDA
Precompiling CUDAExt
1 dependency successfully precompiled in 8 seconds. 383 already precompiled.
[ Info: Switch the backend to CUDA.CUDAKernels.CUDABackend(false, false)
Running MicroMagnetic.jl from Python
Thanks to PythonCall.jl, running MicroMagnetic.jl from Python is seamless.
Below is an example setup for Standard Problem #4:
python
from juliacall import Main as jl
jl.seval("using MicroMagnetic")
# Define simulation parameters
args = {
"name": "std4",
"task_s": ["relax", "dynamics"], # List of tasks to perform
"mesh": jl.FDMesh(nx=200, ny=50, nz=1, dx=2.5e-9, dy=2.5e-9, dz=3e-9), # Julia FDMesh object
"Ms": 8e5, # Saturation magnetization (A/m)
"A": 1.3e-11, # Exchange stiffness constant (J/m)
"demag": True, # Enable demagnetization
"m0": (1, 0.25, 0.1), # Initial magnetization vector
"alpha": 0.02, # Gilbert damping coefficient
"steps": 100, # Number of dynamic simulation steps
"dt": 0.01 * jl.ns, # Time step size (0.01 ns)
"stopping_dmdt": 0.01, # Stopping criterion for relaxation
"dynamic_m_interval": 1, # Save magnetization at each step
"H_s": [(0, 0, 0), (-24.6 * jl.mT, 4.3 * jl.mT, 0)] # Sequence of applied magnetic fields
}
# Run the simulation
sim = jl.sim_with(**args)